Interpolating Wavelet Transforms

نویسنده

  • David L. Donoho
چکیده

We describe several \wavelet transforms" which characterize smoothness spaces and for which the coe cients are obtained by sampling rather than integration. We use them to re-interpret the empirical wavelet transform, i.e. the common practice of applying pyramid lters to samples of a function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear “wavelet Transforms” Based on Median-interpolation

We introduce a nonlinear refinement subdivision scheme based on median-interpolation. The scheme constructs a polynomial interpolating adjacent block medians of an underlying object. The interpolating polynomial is then used to impute block medians at the next finer triadic scale. Perhaps surprisingly, expressions for the refinement operator can be obtained in closed-form for the scheme interpo...

متن کامل

Classical Wavelet Transforms over Finite Fields

This article introduces a systematic study for computational aspects of classical wavelet transforms over finite fields using tools from computational harmonic analysis and also theoretical linear algebra. We present a concrete formulation for the Frobenius norm of the classical wavelet transforms over finite fields. It is shown that each vector defined over a finite field can be represented as...

متن کامل

Nonlinear Pyramid Transforms Based on Median-Interpolation

We introduce a nonlinear refinement subdivision scheme based on median-interpolation. The scheme constructs a polynomial interpolating adjacent block medians of an underlying object. The interpolating polynomial is then used to impute block medians at the next finer triadic scale. Perhaps surprisingly, expressions for the refinement operator can be obtained in closed-form for the scheme interpo...

متن کامل

Fixing of Cycle Slips in Dual-Frequency GPS Phase Observables using Discrete Wavelet Transforms

The occurrence of cycle slips is a major limiting factor for achievement of sub-decimeter accuracy in positioning with GPS (Global Positioning System). In the past, several authors introduced a method based on different combinations of GPS data together with Kalman filter to solve the problem of the cycle slips. In this paper the same philosophy is used but with discrete wavelet transforms. For...

متن کامل

Interpolating polynomial wavelets on [-1, 1]

In the present paper polynomial interpolating scaling function and wavelets are constructed by using the interpolation properties of de la Vallée Poussin kernels with respect to the four kinds of Chebyshev weights. For the decomposition and reconstruction of a given function efficient algorithms based on fast discrete cosine and sine transforms are proposed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1992